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Isentropic flow

For compressible flows, change in thermodynamic property ‘entropy’ is important. From the 

definition of entropy, s; (review course of Engineering Thermodynamics (ME 203))
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For an ideal gas (calorically perfect) with constant specific heats; the change of entropy 

becomes as:
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If the process is adiabatic (no heat transfer) and reversible, the entropy change is zero and 

then the flow is said to be isentropic. In this case

1

2

1

2 lnln0
p

p
R

T

T
cs p −==

The isentropic approximation is common 
in compressible flow theory.
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Isentropic flow
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Thermodynamic property relations for isentropic flows.
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Relates the ratio of pressure at two different states with temperature at those 

states in an isentropic flow.

Power-law relation
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Isentropic flow

RTp =

From ideal gas EOS (Equation of states)
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Thermodynamic property relations for isentropic flows
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Relates the ratio of pressure at two different states with density at those 

states in an isentropic flow.

Power-law relation
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Flow Energy Equation
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Recall the Euler differential equation* (from RTT & differential control volume analysis: ME 321): 

*Ref. ME 321 (Fluid Mechanics-I)
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Integrate the Euler equation along a streamline:
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for incompressible flow (ρ = constant), 

Bernoulli equation:

for compressible flow (ρ ≠ constant), 

rather ρ = f(p).
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Flow Energy Equation

From isentropic flow relation for ideal gas:

Then:
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Flow Energy Equation
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So, the integrated form of the Euler equation along a streamline for compressible isentropic flow comes as:
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Compressible form of Bernoulli Eq:
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Flow Energy Equation

( ) 0
lecompressib
gz

In general, the potential head is insignificant in flows with compressibility; then-
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i.e. compressible form of Bernoulli Equation

for air (k = 1.4), this factor accounts a magnitude of 3.5;

whereas this factor is 1.0 for incompressible flow for any fluid.
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Stagnation state (total state)

The stagnation condition (total condition) is a reference state for compressible flow. This 
condition is extremely useful in the analysis of compressible flow. These are the quantities with 
subscript zero (0).

The stagnation state of a flowing fluid is defined by the state attained by the flowing fluid 
when it is decelerated to zero velocity through isentropic process. Alternatively, it can be defined as 

the static state from which a fluid must be accelerated isentopically in order to attain the actual state for a given flow.

Stagnation (total) properties are-

• Total pressure, p0

• Total temperature, T0

• Total density, ρ0

• Total enthalpy, h0

V= 0

Stagnation condition

= TpV ;0

V= 0

Stagnation condition

= TpV ;0
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Stagnation state (total state)

Pressure cooker
Aerosol spray Spray paint

CNG cylinder in a vehicle Accidents due to CNG cylinder bursting
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Stagnation temperature (total temperature)
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Local points

V≠ 0

Static condition

V= 0

Stagnation condition

Relation between stagnation and 

static temperatures

Compressible form of Bernoulli Equation:

①: any local point (V≠0)

②: stagnation point (V=0)
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Stagnation pressure (total pressure)

Thermodynamic property relations for isentropic flow- 
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Relation between stagnation and 

static pressures
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②: stagnation point (V=0), p2 = p0
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Flow Mach number can be conveniently 

calculated from:
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Stagnation density (total density)

Thermodynamic property relations for isentropic flow- 

Relation between stagnation and 

static densities
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①: any local point (V≠0), ρ1 = ρ

②: stagnation point (V=0), ρ2 = ρ0
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are all gas flows compressible flows?? 

Not all gas flows are compressible flows, neither are all compressible flows gas 

flows
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M ρ0/ρ ∆ρ

0.1 1.005 0.5%

0.2 1.02 2%

0.3 1.04 4%

0.4 1.08 8%

0.5 1.13 13%

1.0 1.58 58%

2.0 4.35 335%

At low speeds, less than Mach number of about 0.3 (~100 m/s, 360 km/hr at STP), gas 

flows may be treated as incompressible flows since the density variations caused by the 

flow are less than 5% which is insignificant in engineering sense.

For air k =1.4

Table: Variation of density with M

General High speed/bullet train
Shinkansen (Japan), TGV (France)
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